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Overview

Static Global Mesh Partitioning

— Mesh Independent Partitioning
e Random Partitioning
e Scattered Decomposition
e Regular Domain Partitioning

— Geometric Partitioning Algorithms (1D/2D/3D)
e Recursive Coordinate Bisection (RCB)
e Recursive Inertial Bisection (RIB)
e Hilbert Space-Filing Curve (HSFC)

— Graph Partitioning Algorithms
e Greedy Bisection

e Recursive Layered (Graph) Bisection
e ParMETIS

— Problems with Standard Graph Partitioning Model
e Hypergraph

Local Refinement

— Kernighan-Lin Algorithm
- Helpful Sets




Global Static Partitioning Algorithms

Partition entire mesh
Partition once

Not concerned with refining or evolving
partition as the simulation progresses

Algorithms may be applicable to dynamic
partitioning schemes




Geometry Independent(?) Partitioning Algorithms

Kind of geometry independent

Based on the order on which the
elements are operated

Ignores X,y,z position of elements
Ignores mesh connectivity




Random Partitioning (Geometry Independent)

 Each element is distributed to a
randomly chosen processor

 On average, work Is well balanced
 No grouping by mesh connectivity
 No grouping by mesh locality
« Communication is thus BAD!!
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Scattered Partitioning (Geometry Independent)

e Each element is distributed Iin order to
the processor with the current smallest
subdomain

e Work iIs well balanced

 Neighbor elements won't be on same
processor.

e Communication i1s thus BAD!!!




Regular Domain Partitioning (Geometry Independent?)

 First n/p elements given to proc O.

e Second n/p elements given to proc 1.
e .. etc.

e Data Locality If numbering supports.

e Communication iIs better but still
possible problems




Geometric Partitioning Algorithms

Elements grouped by geometric region
Based on X,y,z position of elements
Ignores element adjacency

1D, 2D, or 3D

Fast

Load Balance (at least in terms of
elements) can be guaranteed




Recursive Coordinate Bisection (Geometric)
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RCB-1D Partition

RCB - 1D (8 procs)
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Adj. Procs (Max/Sum): 2/14
Bound. Objs (Max/Sum): 3128/23654 T3u3P Run-time: 126.4
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RCB-3D Partition

RCB -- 3D (8 procs)
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1D vs. 2D vs. 3D Partitioning

 The higher the dimension, the lower the
surface/volume ratio.

- Lower bandwidth

 The higher the dimension, the more
neighboring subdomains each subdomain
will bound.
- More communications, more total latency.
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RCB 1-D Scalability Leveling Off
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Recursive Inertial Bisection (Geometric)

 RCB problem when mesh not aligned with
XYZ axes

 RIB uses idea of inertia to improve upon
RCB
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Recursive Inertial Bisection (Geometric)
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RIB-3D Partition

RIB - 3D (8 procs)
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Hilbert Space Filling Curve (Geometric)
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Hilbert Space Filling Curve (Geometric)
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RDDS (5 cell w/ couplers) HSFC-3D Partition

HSFC -- 3D (8 procs)
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Graph Partitioning Algorithms

Build graph out of mesh elements
G = (V,E)
Elements are graph vertices

Graph vertices of adjacent elements
connected by edges In graph
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Graph Partitioning Properties

e Each Partition “should” be continuous.

e Uses element connectivity so
partitions have little discontinuity.

e Slower than basic geometric methods

21



Greedy Bisection (Graph)

e Build graph
e Start at vertex of lowest degree
 Find neighboring layer.

 Repeat with vertices In that layer to
find next layer, etc.

e Stop when n/p vertices are found
e Repeat process
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Greedy Bisection (Graph)

23



Recursive Layered (Graph) Bisection

Build graph
Start from a seed vertex,
Find neighboring layer.

Repeat with vertices In that layer to find
next layer, etc.

Stop when number of vertices In layers
reaches half.

Now have 2 sets
Recursively Repeat.
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Recursive Layered (Graph) Bisection

Seed
(Layer 0)




Choosing Seed Points

e Choice of Seed Points are Important
 Boundary of domain can be good choice.
e 1 of 2 points maximum distance apart.
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ParMETI1S (graph)

Uses a standard graph approach
Partition the vertices of the graph
Minimize the (weighted) edge cut
NP-hard problem

Uses heuristics to generate approximate
solutions
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ParMETIS (Graph)
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ParMETIS

Main ParMET S initial partition algorithm
called ParMETIS_PartKway.

Multi-level k-way partitioning algorithm

Step 1: Graph gradually coarsened down to
graph of a few hundred vertices.

Step 2: k-way partition of coarse graph
computed

Step 3: Graph projected back to original
graph by periodically refining partition.
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RDDS (5 cell w/ couplers) ParMETIS Partition

ParMETIS (8 procs)
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ParMETIS

Multilevel makes k-way graph partitioning
algorithm more acceptable.

Does a great job of minimizing cut (i.e.
pandwidth).

However, pieces can be disconnected.

Not as load balanced as geometric
methods.

More neighbors than 1D geometric
methods (larger number of communications
required).
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Complications in Graph Partitioning

e Several potential shortcomings in standard
graph partitioning model.

e Incorrect edge cut metric

e Limited in the scope of problems that can
be naturally expressed (problem for other
parallel partitioning problems)
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Metrics

e Edge cuts not proportional to total volume
e Overcounting
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Metrics

Communication costs are dependent on
latency (total number of messages sent) as
well as bandwidth

Slowest process often most important

Limited in the scope of problems that can
be naturally expressed

May want to limit communication to nearby
processors

Want to minimize objective function based
on all of these, weighted by importance
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Hypergraphs

Hypergraphs can be used to better
minimize communication in standard graph
problem.

Minimizes number of boundary cuts
Build graph out of mesh elements
G=(V,H)

Elements are graph vertices

A hyperedge exists for each vertex

Hyperedge H, contains V, and Its
neighboring vertices
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Hypergraph Partitioning

e Standard Graph Model (Cut=4)
 Hypergraph Model (Cut=3)
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Local Refinement

e After initial partition, make small local
changes to improve partition quality

« Swap small number of elements across
process boundaries
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Kernighan-Lin Algorithm

Swap pairs of nodes to decrease the cut

Allow intermediate Iincreases in the cut size to
avold local minima

Loop

- Logically exchange pair of nodes with largest gain from
swapping

- lock those nodes

— until all nodes are locked

I new partition is better than old, save.

Perform the swaps for real to obtain final
partition on the best partition found

Different heuristics used to improve speed of
algorithm.
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Kernighan-Lin Algorithm

e Does not partition poorly partitioned meshes well.

e Often used in conjunction with a very
computationally “cheap” global partitioning method.
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Helpful Sets

A set of nodes is helpful If moving it from
one processor to another (and rebalance)
reduces the cut size.

Step 1. FInd a set of nodes In one
partition and move it to the other
partition to decrease the cut size

Step 2. Rebalance the load

Must be a net reduction in cut size after
the two steps.
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Helpful Sets
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Overview

Static Mesh Partitioning
— Recursive Spectral Partitioning
— Greedy Bisection
— Recursive Spectral Bisection
— Graph Partitioning Algorithms
e Jostle
— Geometric Partitioning Algorithms (1D/2D/3D)
e Octree Partitioning (various traversal schemes including HSFC)
Multi-level Hybrid Methods
Dynamic Load Balancing/Data Migration

Dynamic Load Balancing
- Centralized
- Decentralized
- Fully Distributed

Diffusion

Dimension Exchange
Advancing Front Algorithm
Hypergraph

Greedy algorithm
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TODO

Hypergraph

« Kway graph partitioning?
e Understand Kernighan Lin Algorithm
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